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The e$ciency and the robustness of active noise control against #uctuations depend,
amongst other things, on the secondary source and control microphone con"gurations.
Within the context of harmonic sound attenuation, the performance (e$ciency and
robustness) according to the source con"gurations has recently been dealt with. The present
study is focused on the performance according to microphone, or sensor, con"gurations. It
is demonstrated that all sensor con"gurations may become equally e$cient due to the fact
that they may be made to control equally well a domain de"ned by a certain number of
observation points. The paper also gives a de"nition of robustness starting from the result of
previous work on source con"gurations. Robustness is understood here in relation to the
spatial #uctuations of the primary sound "eld. Given this de"nition, indications are
provided for choosing the most robust sensor con"guration or how to improve the
robustness of any one of the sensor con"gurations.

( 2001 Academic Press
1. INTRODUCTION

Active noise control is today a well-known procedure for reducing noise, essentially in the
low audio-frequency range. It consists in voluntarily adding a sound "eld to the disturbing
or &primary "eld' in such a way that they cancel each other out. The ideal voluntarily
radiated noise, also referred to as the &secondary "eld', ought to replicate the disturbing one,
with a sign change at all times and everywhere within the area where sound cancellation is
sought. Achieving perfect synchronicity everywhere is generally an impossible task and
active noise control attenuates the primary "eld as much as is possible. The well-known
means of reaching the goal progressively adapts over time the coe$cients of "lters upstream
from the secondary sources in order for the source driving signals to radiate the appropriate
secondary "eld to minimize the total sound pressure at microphones located in the area of
interest. In the frequency domain, this technique of autoadaptive active noise control is
equivalent to minimizing a function which gives the global sound level from complex
amplitudes of primary pressures, transfer functions and source driving signals. In these
0022-460X/01/390679#26 $35.00/0 ( 2001 Academic Press
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conditions, the attenuation depends on three inputs: the geometrical con"guration of the
secondary sources and the control microphones, the acoustic transfer functions between
these sources and the microphones, the primary "eld at the control microphones (the
latter input is not explicit from the technical point of view but it is from the physical
and mathematical points of view). In the "eld of active sound reduction, predictive
calculations must provide not only the achievable attenuation but also the attenuation that
can be guaranteed when #uctuations a!ect the inputs. Indeed, in the real world, transfer
functions as well as primary "elds are subjected to #uctuations around what can be called
a reference situation. Only the spatial #uctuation or error of primary "elds is considered in
this paper.

E$ciency and robustness according to source con"gurations have been dealt with
recently, either by analyzing only the case of the error in the primary "eld [1] or by
describing the case of all types of errors [2]. Here the concern is with e$ciency and
robustness according to microphone or sensor con"gurations. The problem is worth
studying due to the fact that the number of control microphones is limited by the number of
channels in controllers and, moreover, they often cannot be located where sound
attenuation is sought. For example, in cars or airplanes, control microphones at the
passenger's head will have to be displaced towards the ceiling or fuselage for practical
reasons. Only a few works relevant to the present subject have been published. One of
them mentions that the sensors should be located at the nodes of the residual "eld in the
reference situation (without any error) [3] and another shows the possibility of placing
the sensors in the vicinity of the domain to the controlled rather than inside it [4]. Both
works on sensor locations speak of e$ciency and not of robustness against error. In its
contribution to the problem of e$ciency and robustness of sensor con"gurations in the
presence of errors in the spatial distribution of the primary harmonic "eld, the present
paper will show that all sensor con"gurations may become equally e$cient but that, at
"rst sight, they are not equally robust. However, it will be shown that robustness can be
improved.

E$ciency is obtained by means of "lters associated with the sensors. Two situations are
investigated here. When one "lter is dedicated to each sensor, the weighting achieved is said
to be diagonal because a diagonal matrix describes it; when the "lters couple the sensor
outputs, the weighting is said to be full because it is represented by a full matrix. Only one
diagonal weighting matrix can be associated with each sensor con"guration while an
in"nity of full weighting matrices exists for each con"guration. Here the analytical method
leads to the "lters. Robustness does not have as classical a de"nition as e$ciency and a large
part of the paper is devoted to this. First a qualitative de"nition is sought, essentially owing
to the vocabulary of sets. Then a quantitative de"nition is obtained through the minimum
guaranteed attenuation, derived from previous work on the robustness of source
con"gurations [1]. At this stage, robustness measurements are sought. On the one hand, an
indicator is proposed arising from su$cient conditions (and unfortunately not necessary
conditions) described geometrically, and on the other hand, a distance between two
matrices which will make it possible to give access to or measure the robustness.

The main practical conclusion concerns how robustness measurements are used. In the
presence of a few possible sensor con"gurations, each can become e$cient in the reference
situation by means of a single diagonal weighting, a priori easily implemented. In this case,
the con"guration with the largest indicator of robustness will be chosen; if the indicator is
really large, the con"guration could be kept (more precisely because the chances are that it
will be good); if not, it is best to improve the robustness of a particular
con"guration*chosen for practical reasons for example*the considered weighting of
which is now full. Indeed, the existence of an in"nity of full weighting matrices likely to keep
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the con"guration e$cient makes it possible to obtain robustness by optimizing this
weighting by minimizing the distance quoted above. On the more speculative side, the
paper could reveal that all control microphone con"gurations may become not only
equally e$cient but also almost equally robust. Some physical insights will be given in
the text.

2. SENSOR CONFIGURATION EFFICIENCY

It has already been mentioned that active noise control consists in deliberately making
secondary (or anti-) sources radiate a "eld that adds to the disturbing or primary "eld, so
that they neutralize each other. In fact, the primary sound level can rarely be totally
cancelled out and so optimal attenuation is sought.

2.1. EFFICIENCY OVER A WHOLE AREA WITH AUTOADAPTIVE ACTIVE CONTROL

One can de"ne the sound level, optimal control and optimal attenuation as well as
the measure of the optimal attenuation within the context of harmonic sound "elds,
the equivalent of which in the time-domain is implemented with the now classical
X-LMS algorithm that adapts the coe$cients of "lters upstream from the secondary
sources.

The harmonic primary "eld p
n
(x, u) is spatially discretized by N points where sensors are

located. The pressure at each sensor constitutes one component of the primary "eld
vector p

n
. The acoustic function, associated with the primary sound level, is

J"J(p
n
)"p*

n
. p

n
"Ep

n
E2
L2: i.e., the sum of the square modulus of the primary sound

pressures at the sensors. The transfer functions associated with the N
s
secondary sources

will also be discretized by the fact that the pressure responses are seen from the number N of
sensors, and they will be written in the matrix form G. Vector / is made up of the driving
signals of the secondary sources, or actuators. The addition of the secondary "eld to the
primary "eld leads to what is called the residual level

J
res

(/)"EG ./#p
n
E2
L2"/*.H ./#2Re (/*.U)#J, (1)

with a* being the transpose conjugate of a, H"G*.G, Hermitian positive de"nite matrix,
of dimensions (N

s
, N

s
), and U"G* . p

n
of dimensions (N

s
, 1).

The goal of active noise control is to reduce the primary level: i.e., to obtain J
res

(/)(J.
The optimal driving signals, also called optimal control, which minimizes the
acoustic function J

res
(/) is /

n
"!H~1.U from which is derived the minimum residual

level

Jmin
res

(/
n
)"J!p*

n
.G .H~1.G*.p

n
"J!p*

n
.A.p

n
"J!/*

n
.H ./

n
. (2)

The matrix A, of dimensions (N, N), is Hermitian and also is a projection matrix
(A2"A); its eigenvalues are 1 or 0.

The quantity J
a
"p*

n
.A.p

n
is interpreted as the greatest part of the primary level J that

has been cancelled out by active control, leading to Jmin
res

as the minimal remaining part. The
de"nition of the optimal attenuation is Jmin

res
/J"1!J

a
/J"1!R

n
where R

n
represents the

ratio of the part of J cancelled out to the primary level J. In some cases it is possible to have
J
a
"J, but usually only J

a
(J is reachable.
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In dB, the optimal sound attenuation is the di!erence between the primary and the
minimum residual sound levels:

Aopt(p
n
)"!10 log

10A
Jmin
res
J B"!10 log

10A1!
p*
n
.A.p

n
J B"!10 log

10A
p*
n
. (T!A) .p

n
J B,

(3)

where T is the identity matrix. Let R
n
"p*

n
.A.p

n
/J"/*

n
.H ./

n
/p*

n
.p

n
"E/

n
E2
H
/Ep

n
E2
L2 .

In the present context, the norms of the pressure-like quantities are always in the ¸2 sense
while the control-like quantities are in the H sense. This information will not be repeated in
the paper.

2.2. HOW TO MAINTAIN EFFICIENCY WITH A SMALL NUMBER OF MICROPHONES

It was already mentioned in the introduction that the question of microphone positioning
arises for two practical reasons at least. First, the number of control microphones or error
sensors is limited by the number of inputs available in current controllers, generally between
4 and 16*the number of calculations carried out by digital signal processors during
a sample period increases with the number of microphones, resulting in this limitation.
Second, the control microphones can rarely be located where sound attenuation is
sought. The "rst reason leads one to look at the possibility of keeping the e$ciency
obtained with N sensors when only N

c
, less than N, are available. In this paper, the N

c
sensors are chosen from among the N but it just so happens that the development presented
is su$ciently general to deal also with the problem of positioning the sensors outside the
area of interest. It will be shown that any con"guration of any number N

c
of control

microphones (N
c
(N) may become as e$cient as the initial con"guration with

N microphones. The N points where attenuation is wanted will be referred to as observation
points while the N

c
points leading to the control of the secondary sources will be referred to

as control points.
Consider the reference situation where the primary "eld is p

n
. The optimal control /

n
is

the solution of programming min/ EG ./#p
n
E2. With J

res
of equation (1), the minimum

value of J
res

is Jmin
res

of equation (2). In the very particular case where N
s
"N and G is

non-singular, J
res

is of zero minimum value. With a number N
c
of control sensors, less than

the initial number N, let G
c
be the transfer matrix, the dimensions of which are (N

c
, N

s
),

which is "lled with the transfer functions from the N
s
secondary sources towards the N

c
control sensors, and write pc

n
as the primary "eld of reference at the N

c
sensors. How is it

possible, in the situation of reference, to obtain the optimal attenuation at the N sensors
with the help of a control working with the reduced number N

c
of control sensors? If m

n
is

the optimal control originating from the N
c
error sensors, the goal would be reached by

satisfying m
n
"/

n
.

With N
c
sensors, in the situation of reference, the same programming as before will lead

to the optimal control m
n
, the solution of minm Jc

res
where Jc

res
"EG

c
.m#pc

n
E2 and

Jc,min
res

"EG
c
.m

n
#pc

n
E2. As there is no reason for m

n
to be identical to /

n
, the minimization

process will be applied no longer to Jc
res

but to another sound level JI c
res

that has to be found.
The functional JI c

res
found has the form JI c

res
"EG

c
.m#D.pc

n
E2 where the matrix D, of

dimensions (N
c
, N

c
), is such that m

n
"/

n
.

To identify D, it is required that JI c
res

(m)"0 when m"m
n
"/

n
. JI c

res
(m) being a quadratic

functional of m and H
c
"G*

c
.G

c
being positive de"nite, its zero value is its minimum value



Figure 1. Diagram of the electroacoustic channels for a control using one secondary source and two control
microphones weighted by a diagonal matrix D, the terms of which are a and b.
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resulting in JI c,min
res

(/
n
)"0: i.e., E!G

c
.H~1.G*.p

n
#D.pc

n
E2"0 from which

D.pc
n
"G

c
.H~1.G*.p

n
, (4)

where the vector on the right-hand side is well determined. With equation (4) it appears that
the weighting matrix D is, for each sensor con"guration, unique when diagonal. Indeed
there are as many equations (N

c
) as unknowns. On the contrary, for a non-diagonal

weighting matrix, there are fewer equations than unknowns and an in"nity of matrices
exists which allow one to reach the optimal attenuation at the N sensors: when D is a full
matrix, the system has N

c
equations for N

c
]N

c
unknowns. Thus equation (4) shows that it

is always possible to obtain e$cient sensor con"gurations, the price to be paid being the
introduction of a weighting matrix, the role of which is to modify the acoustic pressure at
the N

c
microphones. Figures 1 and 2 show schematically the insertion of the "lter D,

respectively, diagonal and full, in the diagram of electroacoustic channels for adaptive
control.

The trend consisting in locating the error sensors at the nodes of the residual "eld [3] is
a particular case of equation (4). Indeed, at the nodes of the residual "eld, one has pc

sec
"!pc

n
(pc

sec
is the pressure radiated at the N

c
microphones by the secondary sources: i.e.,

!G
c
.H~1.G*.p

n
) from which it can be seen that D is the identity matrix T. The control is

thus m
n
"/

n
. Recall that the necessary condition to "nd /

n
is N

c
*N

s
.

Here one can digress to answer the following question: can the error sensors be located at
any nodal position: i.e., where the residual pressure is perfectly zero? The response is yes
according to the reasoning that follows. With D"T, one has JI c

res
(m)"Jc

res
(m)"

+Nc

i/1
Dp

res
(x

i
)D2 where p

res
(x

i
) is the residual pressure at point x

i
made up of the primary and

the secondary pressures. When m has the optimal value, the function reaches its minimum



Figure 2. Diagram of the electroacoustic channels for a control using one secondary source and two control
microphones weighted by a full matrix D, the terms of which are a and b on the "rst row, c and d on the second
row.
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value Jc,min
res

. Suppose now that there exists one location x
j
where Dp

res
(x

j
)D2"0 for m"m

n
.

As p
res

(x
j
)"p

n
(x

j
)#+Ns

s/1
G(x

j
, x

s
) l

s
"p

n
(x

j
)#gt

j
. m, it appears that Dp

res
(x

j
)D2 is also

a quadratic function of m. If this quadratic function is zero at m
n
and since g*

j
.g

j
is positive

de"nite, this zero is a minimum for Dp
res

(x
j
D2: i.e., m

n
is the solution of the programming

minm Dpres (xj
)D2. The same reasoning applies when considering more than one nodal location.

The remote microphone technique [4] with the microphones located outside the control
area can also be written in the same general way with DOT.

A posteriori the role played by the weighting matrix D can be understood in the following
manner. At "rst, the goal is for the secondary sources to cancel out the residual level at
N microphones, in other words to reach p

res
,0. As this goal is impossible to reach

perfectly one must minimize the acoustic level in order to obtain the optimal attenuation
and residual "eld. The latter is thus accessible thanks to the secondary sources. Now the
objective consists in reaching this residual pressure p

res
perfectly i.e., with zero distance from

the objective. So G ./ was asked to reach !(p
res
!0) while G .m must reach !(pc

n
!pc

res
).

This last quantity, written !D.pc
n
, gives the role of D in equation (4).

It must be emphasized that the e!ort made to "nd a weighting matrix capable of leading
to the optimal attenuation at the N microphones does not bring any new information
concerning the results of the optimal control in the reference situation, as these results
were necessary to obtain the weighting matrix. However, in the following study of
sensor con"guration robustness, the weighting matrix plays a fundamental role by
making it possible to tackle the problem, resulting in new information outside the reference
situation.



ON ACTIVE CONTROL SENSOR CONFIGURATIONS 685
2.3. NOTIONS OF CONCEPT, DEFINITION AND MEASUREMENT IN THE CASE OF EFFICIENCY

The de"nition of e$ciency for an active control system is nowadays so classical that there
is no point in giving its roots before using it at the beginning of section 2. Concerning
robustness, analyzed from section 3 to section 5, no tradition exists and the whole approach,
going from the concept to its de"nition right through to its measurement, has to be written
explicitly. Before using these three notions in the robustness analysis, the well-known
example of e$ciency is taken to clarify them.

Active control of sound "elds is designed to reduce disturbing sounds; its goal is sound
attenuation. A control system is e$cient if it greatly attenuates the disturbing "eld.
Attenuation is the concept associated with e$ciency and can take various forms like
D Dp

res
D!Dp

n
D D or Dp

res
D/Dp

n
D, without yet giving the adequate norms.

The choice of the de"nition has been the ratio Ep
res

E/Ep
n
E where the norms are ¸2-norms.

It so happens that this de"nition is a quantity easily reached, but it has to be remembered
that other de"nitions exist [5].

The measurement of the attenuation is !20 log
10

(Ep
res

E/Ep
n
E). This quantity is also

easily obtainable. It makes it possible to compare various control systems because the
measurement is a monotonic function of Ep

res
E/Ep

n
E: i.e., the measurement always increases

or decreases when the de"nition increases; presently, the measurement increases when the
de"nition decreases. A system is all the more e$cient the smaller the de"nition and the
higher the value of the attenuation measured.

Concerning e$ciency, the previous notions are so simple that their explanation brings
nothing new. However, in general cases these notions may not be so obvious because
concept and de"nition are not universally accepted, because the de"nition chosen for its
accuracy or objectivity is not a quantity easily obtainable, because easily reachable
quantities, the role of which could be to measure, are not rigorously monotonic functions of
the de"nition. These di$culties seem to belong to the new "eld of research concerned by the
robustness of active control systems against #uctuations of data.

3. CONCEPTS AND QUALITATIVE ASPECTS FOR SENSOR
CONFIGURATION ROBUSTNESS

Contrary to e$ciency, robustness has not received a universal meaning in the "eld of
active noise control. That is why the "rst re#ection consists in imagining what the concept
of robustness could be.

Consider whatever primary "eld denoted as p at the N sensors. When the number
N

c
of control sensors is less than the number N of observation points, the optimal

driving signals at the secondary sources, ordered in vector m, are the solution of
minm EG

c
.m#D.pcE2 i.e., m"!H~1

c
.G*

c
.D.pc, and m depends on p since pc"P.p

where P is a rectangular projection matrix representing the choice of N
c

sensors
from among N. The optimal control resulting from the N

c
error sensors have thus the

form

m"!H~1
c

.G*
c
.D.P.p . (5)

For the sensor con"guration under study, it has been seen that it is possible to "nd one
diagonal matrix or an in"nite number of full matrices D such that m

n
"/

n
, when p"p

n
,

thus leading to the optimal attenuation in the reference situation. But when p di!ers from p
n

then m, the optimal control to attenuate pc at the N
c
sensors, di!ers from /, the optimal

control to attenuate p at the N sensors. In those conditions, what can be expected from
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a control system where the number of control sensors is less than the number of observation
points? For the time being, a very vague de"nition of the robustness of a sensor
con"guration is its capacity to attenuate a primary "eld p di!erent from the primary "eld of
reference p

n
. The objective of this third section is to reach a more precise idea. Three

possible ways of presenting the concept of robustness, that is to say of "nding what could be
called a robust sensor con"guration against errors in, or #uctuations of, the spatial
distribution of the primary "eld, are proposed.

3.1. SEARCH FOR THE CONFIGURATION GUARANTEEING THE HIGHEST MINIMUM

ATTENUATION

One way of classifying the sensor con"gurations according to their capacity to
attenuate a non-reference acoustic "eld, consists in extending what has recently been
done in the case where all observation points are control points [1]. For each primary
"eld p, and for each sensor con"guration called con"guration &&c'', there exists an optimal
attenuation A

c
(p) resulting from the optimal control m (p). Indeed

A
c
(p)"!10 log

10
(Jmin

res
/J) where J concerns the primary level associated with p: i.e.,

J"EpE2 and where Jmin
res

is obtained with the optimal control m resulting from the N
c

control sensors to reduce p: i.e., Jmin
res

"EG .m#pE2. The control m minimizes
JI c
res
"EG

c
.m#D.P.pE2 and has the form m"!H~1

c
.G*

c
. D.P.p (equation (5)). Upon

introducing

A
c
"(H~1

c
.G*

c
.D.P!H~1.G*)*.H. (H~1

c
.G*

c
.D.P!H~1.G*) and A"G .H~1.G*,

(equation 2) results in

A
c
(p)"!10 log

10 A
p*. (T!A#A

c
) .p

EpE2 B. (6)

Now de"ne the set E
e
by E

e
"Mp"p

n
#dp such that EdpE/Ep

n
E)eN. By following the

same method as was used to obtain the minimum attenuation guaranteed by a
secondary source system in the presence of errors in the spatial distribution of the primary
"eld, one could hope to obtain the minimum attenuation guaranteed by a secondary source
system and a sensors con"guration made up of N

c
sensors instead of N. The formulation

could be

Amin
c

(e)"min
p|Ee

A
c
(p). (7)

Unfortunately, contrary to the case where N
c
"N, it will be seen that Amin

c
(e) cannot be

reached by analytical means but can be achieved by an exhaustive way or a genetic
algorithm.

For a given value of &e', the sensor con"guration could be said to be all the more robust as
the value of Amin

c
(e) is high. The approach above requires D to be known for each sensor

con"guration. It is thus suitable for the case where there is a single diagonal weighting
matrix D for each con"guration. For a full weighting matrix, the search for D that
maximizes Amin

c
(e), seems impossible, apparently more for practical than for

conceptual reasons. The method can thus be adopted only after having chosen one full
weighting matrix from among the in"nity, and more particularly after having optimized it
to improve the robustness of the con"guration thanks to another method that has to be
devised.
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3.2. SEARCH FOR THE CONFIGURATION ATTENUATING THE LARGEST SET OF

PRIMARY FIELDS

A second way of dealing with the problem of sensor con"guration robustness has already
been published [6, 7]. However, it will be presented here in a slightly di!erent manner
without changing the result. In this paper, the new information presented concerning
this approach lies in the numerical and experimental tests described in sections 5.1.2.
and 5.1.3.

For the primary "eld of reference, written in the form of a vector p
n
"lled with the sound

pressures at the N observation points, the vector of the driving signals m (p
n
) applied to the

secondary sources, obtained from a number N
c
of control sensors, leads to the optimal

attenuation in the whole area X where sound attenuation is sought, de"ned here by the
number of observation points N larger than N

c
. For non-reference primary "elds p, the

driving signals m(p) no longer result in the optimal attenuation in X, and even ampli"cation
is possible. In a very vague manner again, a sensor con"guration can be said to be robust if
it is capable of reducing a non-reference primary "eld; in other words if m (p) attenuates p. In
this approach to the problem, another consideration has to be taken into account:
attempting to reduce the primary level J (p

n
) expressed in dB, for the situation of reference,

shows that this level is high, say 100 dB. When the primary "eld departs from that of
reference p

n
and becomes p, the primary sound level J (p) can be still higher, say 120 dB. So

the control m (p) has to attenuate not only J (p) but also J (p
n
) as this latter level was already

considered to be high. More generally, m (p) must reduce the weakest level of both. With
what will be called the sensor con"guration c, let us associate the set E

c
of "elds p such that

the driving signals m (p) satisfy what is needed:

E
c
"Mp"p

n
#dp such that m(p) attenuates J (p) and m (p) attenuates J(p

n
)N.

It will be shown that the set E
c

could be written as E
c
"Mp"p

n
#dp such that

EdpE/EpE)eACN where the value of eAC is totally dependent on the con"guration and easily
calculated. The largest set is the one with the largest indicator eAC. The condition under
which it represents the most robust con"guration will be given.

Knowledge of D for each con"guration is needed for the above approach which is well
suited to the case of a single diagonal weighting matrix. It might also have been useful to
optimize a full weighting matrix in order to maximize the indicator eAC and it will be
explained later why this path was abandoned.

3.3. SEARCH FOR THE CONFIGURATION MOST CLOSELY &&RESEMBLING'' THE IDEAL CASE

It has been mentioned that an indicator other than Amin
c

(e) and eAC had to be found. The
one imagined is similarity, de"ned as a norm of the di!erence between two matrices. The
"rst matrix is the matrix A related to the situation where all observation points are control
sensors. The second, written G .H~1

c
.D.P, is partly related to the situation where the

number of control sensors N
c

is less than the number of observation points N where
attenuation is sought. The similarity so de"ned depends on D. When comparing various
con"gurations, each with its single diagonal weighting matrix D, it will turn out that the
best similarity, i.e., the smallest value of the di!erence, is associated with the con"guration
of greatest robustness obtained by the indicator eAC. When working with one con"guration
and a full matrix D "ltering the control sensor outputs, the choice of D exists and there
could be a possibility of minimizing the distance to improve the robustness. From this point
of view, similarity has proved to be very successful.
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4. CHOICE OF A QUANTITATIVE DEFINITION OF SENSOR
CONFIGURATION ROBUSTNESS

From the three possible approaches regarding robustness, the indicator eAC as well as the
similarity will result from relatively easy calculations but they are not immediately
interpretable from the quantitative point of view. The interpretation is clearer in the curves
Amin

c
(e) and, besides, they appear to be less constrained by hypotheses. In these conditions,

Amin
c

(e) will play the role of robustness de"nition while the two others, studied in section 5,
will be tested as measurements of robustness.

4.1. DETERMINATION OF Amin
c

(e) BY AN EXHAUSTIVE WAY

Given a con"guration of N
c
control microphones, the problem, introduced in section 3.1,

consists in searching for the minimum attenuation Amin
c

, seen at the total number of
observation points which constitute the whole acoustic area under study. The search is
carried out for sound pressure "elds around a "eld of reference. The relative errors of the
"elds considered are less than a predetermined value &e'. The aim is to determine the most
robust sensor con"guration that, for a given value of &e', is associated with the highest curve
Amin

c
(e).

The starting equations are

Amin
c

(e)"min
p|Ee

A
c
(p), E

e
"Mp"p

n
#dp such that EdpE/Ep

n
E)eN, (8)

where A
c
(p), de"ned in equation (6), is the optimal attenuation of the primary pressure p,

obtained with the con"guration made up of the N
c
sensors.

The attenuation A
c
(p) depends only on the direction of the primary "eld vector p. It turns

out that, thanks to this property, the quantity e (p)"EdpE/Ep
n
E"Ep

n
!pE/Ep

n
E may be

minimized without changing the solution of problem (8). This leads to

e
min

(p)"A
Ep

n
!pE

Ep
n
E B

min

"

KKpn!
p*.p

n
EpE2

p KK
Ep

n
E

,

the value of which must now be less than or equal to the quantity denoted as e
min

[1].
The search of the curve Amin

c
(e

min
) by an exhaustive way consists in working with a large

number of arbitrary primary "elds p. For each p, e
min

and the optimal attenuation A
c
are

calculated. A cloud of points is thus obtained in the co-ordinate system (e
min

, A
c
). The curve

Amin
c

(e
min

) is the inferior limit of the cloud of points.
In an attempt to obtain more directly this curve, an e!ort has been made to "nd the

problem of which Amin
c

(e
min

) is the solution.

4.2. PROBLEM OF WHICH Amin
c

(e
min

) IS THE SOLUTION

Since the attenuation A
c
(p) depends only on the direction of the primary "eld vector, for

each pressure p, one can take among all the "elds of the same direction the "eld pA such that
pA*.p

n
"EpAE2. The constraint

KKpn!
pA.p

n
EpAE2

pA KK
Ep

n
E

)e
min
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becomes Ep
n
!pAE/Ep

n
E)e

min
or EpAE2*(1!e2

min
)Ep

n
E2 via Ep

n
!pAE2"(p

n
!pA)*(p

n
!pA).

The problem to be solved is now

Amin
c

(e
min

)"min
p{{

A
c
(pA), pA*.p

n
"EpAE2, EpAE2*(1!e2

min
)Ep

n
E2. (9)

From now on, pA will be denoted p.
Before being solved, problem (9) has still to be modi"ed. In the development of A

c
(p) in

equation (6), denoted M"T!A#A
c
. If S and U are, respectively, the diagonal and

full matrices "lled with the eigenvalues and eigenvectors of M, then M"U.S.U*. By
changing p into p8 such that p8 "U*.p, A

c
(p) has the form

A
c
(p)"!10 log

10A
p*.(T!A#A

c
) .p

EpE2 B"!10 log
10A

p8 *.S.p8
Ep8 E2 B"!10 log

10A
+

i
s
i
DpJ

i
D2

Ep8 E2 B.
It will appear a posteriori that, in problem (9), Amin

c
(e

min
) decreases when e

min
increases and

thus the constraint Ep
n
!pAE/Ep

n
E)e

min
can also be written as Ep

n
!pAE/Ep

n
E"e

min
without any consequence on the solution of the problem. The information makes it possible
to replace, in problem (9), the constraint EpE2*(1!e2

min
)Ep

n
E2 by EpE2"(1!e2

min
) Ep

n
E2.

This results in the minimization of A
c

being replaced by the following maximization:
max

p8
+

i
s
i
DpJ

i
D2 (upon remembering that Ep8 E2"EpE2).

Finally changing p into the variable x, where the positive real components are x
i
"DpJ

i
D,

results in the last form of the problem, which is an extension of the formulation written
when all the sensors are control sensors but with coe$cients s

i
, the values of which are no

longer 0 or 1:

max
x

f (x) where f (x)"+
i

s
i
x2
i
,

g(x))0 where g(x)"(1!e2
min

)Ex
n
E2!+

i

x2
i
,

h(x)"0 where h(x)"+
i

x
i
x
ni
!+

i

x2
i
. (10)

Unfortunately, no analytical solution to problem (10) can be obtained. The solution may be
found by a genetic algorithm.

It has to be noted here that there is no constraint on p"p
n
#dp in the previous

formulation of the problem and the method for "nding its solution is given in the next
paragraph. In fact in the real world, p and p

n
both satisfy the same boundary conditions.

Until now it has not been found how to formulate the problem that, taking into account
these boundary conditions, has Amin

c
(e

min
) for solution. In such a case there is no choice but

to determine Amin
c

(e
min

) by exhaustive means.

4.3. SOLUTION OBTAINED BY GENETIC ALGORITHM AND NUMERICAL SIMULATIONS

The procedure of the method, the main lines of which are given in Appendix A, is applied
to the problem for each value of e

min
.
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The vector-individuals x belong to R` in the sense that each of their N (number of
observation points) components x

i
belongs to R`. To satisfy the constraint h(x)"0,

a component k depends on the (N!1) others in each vector. Indeed the constraint is also
written as

x2
k
!x

k
x
nk
!A +

iOk

x
i
x
ni
!x2

i B"0 or x
k
"

x
nk
$Jx2

nk
#4+

iOk
(x

i
x
ni
!x2

i
)

2
.

This component has to be real and positive, and the following inequalities must apply:

x2
nk
#4 +

iOk

(x
i
x
ni
!x2

i
)*0, x

nk
$Sx2

nk
#4 +

iOk

(x
i
x
ni
!x2

i
)*0.

Thus, a population with M individuals (around 40) is built by choosing randomly (N!1)
components and then deducing by calculation the remaining one in order to satisfy
h(x)"0. The vector calculated in this way is kept only if it is real and positive. The vector
must also satisfy g(x))0. If not, it is rejected. Thus the "rst population is obtained (around
40 individuals).

For the members of the population, the values of f (x) are calculated and the individuals
x are classi"ed in the order of the decreasing values of f (x).

The parents are selected and their components are crossed and/or mutated. Only the
products which satisfy the constraints are kept. The set of around 40 children constitutes
the next generation. f (x) is calculated and the individuals x are classi"ed. If necessary the
procedure carries on by returning to the selection of the individuals who are going to play
the role of parents.

The algorithm stops when the maximum value of f (x) no longer increases or is su$ciently
high and the value of Amin

c
(e

min
) is "nally deduced.

Numerical simulations will con"rm that the minimum attenuation obtained by
the method really is the lowest limit of all possible attenuations. Only one secondary
source is present. Three sensor con"gurations are made up of two microphones chosen
from among three that constitute the whole acoustic area of interest. The data are thus
N"3, N

c
"2 and C2

3
"3. Arbitrary transfer functions and primary "eld of reference are

given.
First the exhaustive way is applied. Each of the three con"gurations is submitted to the

control of a large number of primary "elds (2000) which di!er from the reference primary
"eld by their spatial distribution. To this end, it is su$cient to add, at each point x, a not too
large random value of pressure to the pressure of reference. The error-attenuation couples
form a cloud of points.

Then the genetic algorithm is implemented for each of the three con"gurations. If it has
converged towards the curve of minimum attenuation against the minimized error e

min
, the

overall cloud must stay above this curve. Figures 3}5 present the results. The minimum
attenuations calculated are very near those observed, the greatest di!erence being of 0)3 dB.
On each of the three "gures, there exists a value of e

min
beyond which it is impossible to

ensure no ampli"cation; respectively beyond emax
min

+0)7, 0)6 and 0)47, ampli"cations are
liable to occur. With a PC equipped with a clock at 300 MHz, the calculations of the
minimum attenuation lasted almost 5 h! This is the practical reason why the de"nition of
robustness is not easily determined, as long as this genetic algorithm is used. Moreover, as the
duration is for a given D, it is impossible with this technique to improve Amin

c
(e

min
) by

optimizing D.



Figure 3. Minimum attenuation in dB against minimized relative error in the primary "eld. The curve results
from a genetic algorithm applied to a con"guration of two sensors, the role of which is to reduce the sound "eld at
three sensors. The cloud made up of 2000 optimal attenuations associated with 2000 primary "elds remains above
the lowest limit.

Figure 4. As Figure 3, but for the second con"guration of two microphones from among three.
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5. MEASUREMENT OF THE SENSOR CONFIGURATION ROBUSTNESS

From among the three concepts of robustness presented in section 3, Amin
c

(e
min

) has been
chosen as the de"nition as it results from the smallest number of restrictive hypotheses.
Unfortunately, as has been shown, it is not always easily accessible from the quantitative
point of view. Are the other two concepts more easily accessible and are they able to give an
insight into the robustness de"ned by Amin

c
(e

min
)? The present section shows that the

indicator eAC arising from su$cient conditions only, is easily calculated for each sensor
con"guration but it reveals robustness mainly when its value is high. On the contrary, the
similarity between two matrices, also easily calculated, reveals robustness in the sense that



Figure 5. As Figure 3, but for the third con"guration of two microphones from among three.

minimizing the distance between the two matrices maximizes the value of Amin
c

(e
min

). At this
stage in the investigation, it could transpire that this similarity might be a promising
indicator o!ering the characteristics of a measurement.
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5.1. SUFFICIENT CONDITIONS AND VALUE OF eAC AS AN INDICATOR OF ROBUSTNESS

At the end of section 4.3 where Figures 3}5 were presented, it was emphasized that for
each curve a value emax

min
exists beyond which one cannot guarantee the absence of

ampli"cation of the primary level J (p) associated with p. In the same "gures one can see that
the higher the value of emax

min
, the better the robustness; i.e., the higher the curve Amin

c
(e

min
).

Had it been easy to access the value of emax
min

, robustness would have been easily obtained.
Until now the research in this direction has not given results. However, it has been possible
to determine an indicator, of a simple form at the end of the demonstration, which can
guarantee the absence of ampli"cation of J(p), among others. This coe$cient is more
restrictive than emax

min
. Is the restriction a handicap to "nd the robustness?

5.1.1. Approach leading to the indicator eAC

In the general presentation of section 3.2, the search for the set E
c
has been justi"ed: each

sensor con"guration called con"guration &&c'' is associated with an optimal control
m (obtained from the minimization of JI c

res
) for each pressure "eld p as well as with a set E

c
de"ned by

E
c
"Mp"p

n
#dp such that J

res
(m, p))J(p) and J

res
(m, p))J(p

n
)N.

To demonstrate that it is su$cient (and not necessary) for E
c
to be de"ned by

E
c
"Mp"p

n
#dp such that EdpE/Ep

n
E)eACN

in order to satisfy the constraints J
res

(m, p))J (p) and J
res

(m, p))J(p
n
), a slightly di!erent

approach from those already presented [6, 7] is written here. The consideration are still of
geometrical nature in the space of the driving signals or controls of the secondary sources.



Figure 6. Geometrical representation to show that care must be taken not to amplify J(p
n
); here two secondary

sources are driven by real signals /
1

and /
2
.
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The approach is based on the following knowledge: in the reference situation, the optimal
attenuation of J(p

n
) through R

n
obtained with /

n
(see section 2.1); the relative error of the

perturbed primary pressure "eld p to the primary pressure "eld of reference p
n

via
e"EdpE/Ep

n
E)e; the control microphone con"guration with its weighting matrix D*the

role of which in the reference situation is to give m
n
"/

n
*leading to m"!H~1

c
.G*

c
.D.P.p

(equation (5)). For the time being only the case of diagonal D is considered.
The main lines of the approach will now be described and Figure 6 illustrates the

approach from a geometrical viewpoint. The demonstrations of each assertion are reported
in Appendix B.

A property largely used in what follows is a prelude to the approach. Let b be the optimal
control vector of optimal driving signals that best attenuates the sound level I(q) associated
with the primary acoustic pressure "eld q. Any control a, non-optimal, will attenuate
I(q)*more precisely will not amplify*if and only if Ea!bE)EbE; in other terms if and
only if a belongs to the bowl Bb located in the control space with N

s
dimensions (with N

s
secondary sources, there are N

s
driving signals) and with a distance de"ned by the H-norm

(see section 2.1). The bowl Bb is centered at b and of radius EbE.
One can now envisage the control m (p). It attenuates J(p) if m3B, bowl centered at / and

of radius E/E, where / is the optimal control to attenuate J (p). The control m (p) attenuates
J(p

n
) if m3B

n
, bowl centered at /

n
and of radius E/

n
E, where /

n
is the optimal control to

attenuate J (p
n
). The control m (p) satis"es both attenuations at the intersection of the two

bowls but one has not managed to eliminate in a simple manner / which is not included in
the knowledge on which the approach is based. That is why only su$cient conditions have
been sought.

The su$cient condition found for m3B is Em!/E)Em!/
n
E#(e/JR

n
) E/

n
E. This

information is obtained after having demonstrated that /3B
e

where B
e

is the bowl

centered at /
n
, the radius of which is (e/JR

n
) E/

n
E.

The su$cient condition found for m3B
n

is Em!/E)(1!e/JR
n
) E/

n
E, thanks to

a geometrical observation.
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At this stage it is possible to eliminate / between the above two su$cient conditions to

obtain Em!/
n
E)(1!2e/JR

n
) E/

n
E. But Em!/

n
E2"(m!/

n
)*.H. (m!/

n
) may be

expressed from dp and from a matrix C associated with the sensor con"guration and its
D matrix to keep it e$cient.

It results in

EdpE
Ep

n
E
)

JR
n

JECE#2
"eAC. (11)

This shows, therefore, that the set E
c
of perturbed primary "elds, such that m (p) surely

attenuates J(p) as well as J(p
n
) is all the larger the higher the eAC. With D diagonal, unique

for each sensor con"guration, is the con"guration all the more robust the higher the eAC,
where the robustness is as de"ned in section 4? In other words, does there exist a good
relation of order between eAC and Amin

c
(e

min
) that could lead to considering eAC as

a measurement? Notwithstanding the fact that the trends are encouraging, some results
from the following experiment will prevent one from reaching a de"nitive conclusion.

5.1.2. Numerical tests and comparison between the relation of order of the indicator eAC

and the robustness Amin
c

(e
min

)

A "rst set of sensor con"gurations is tested. They are extracted from X made up of four
sensors of which two are control microphones. There are C2

4
"6 sensor con"gurations. The

curves Amin
c

(e
min

) are obtained here by exhaustive means: given one secondary source, the
arbitrary transfer functions and a primary "eld of reference, the six control con"gurations
are working with a great number of primary "elds, the spatial distributions of which vary.
The minimized relative error and the attenuation accompany each primary "eld. The
error-attenuation couples form a cloud of points that is located above the minimum
attenuation. An analytical formula is used to plot the minimum attenuation when all four
sensors constitute the whole acoustic area [1].

Each of the six con"gurations is provided with a single diagonal matrix D and thus with
the coe$cient eAC. To put this coe$cient to the test, one has to see if the relation of order
between the indicators eAC, corresponds to the relation of order between the con"gurations'
minimum guaranteed attenuations: i.e., in the curves Amin

c
(e

min
) of the con"gurations, de"ned

as robustness in section 4. Figure 7 shows the correspondence between the value of the
Figure 7. Comparison between the relations of order originating from the index eAC and from the minimal
attenuation Amin

c
(e

min
) in dB obtained exhaustively (numerical simulations). , 0)2804; , 0)2691;

, 0)2182; , 0)2102; , 0)2098; , 0)1805.



Figure 8. Comparison between the relations of order originating from the index eAC and from the minimum
attenuation Amin

c
(e

min
) in dB obtained by a natural method (numerical simulations).
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indicator eAC and the curve of minimum attenuation Amin
c

(e
min

) associated with each sensor
con"guration. The highest minimum attenuation corresponds to the set of four sensors:
i.e., the whole domain X. Here, the observed relation of order arising from the indicators
eAC for the six con"gurations of two sensors weighted by a diagonal matrix is globally the
same as the relation of order given by the minimum attenuations. However, the "gure also
shows what prevents one from reaching a de"nitive conclusion: the highest curve of
Amin

c
(e

min
) may not correspond exactly to the highest value of eAC"0)2804 but to the value

eAC"0)2691, slightly below.
The second numerical test is carried out with two control microphones extracted from X,

made up of three sensors. There are C2
3
"3 sensor con"gurations. The same procedure as

before is applied except that the minimum attenuation arises here from a natural method.
Figure 8 shows here a relation of order arising from eAC, in close agreement with the one
obtained from Amin

c
(e

min
) (the minimum attenuation for the whole domain X is not given

here).
In these purely numerical tests, where all sound pressure "elds of a given relative error

may have any form, the relations of order due to eAC and Amin
c

(e
min

) are in satisfactory
agreement. This has been con"rmed by other tests.

5.1.3. Experimental tests

Does the previous conclusion hold with experimental tests where the various primary
"elds inevitably satisfy the particular boundary conditions of the set-up?

The goal is the same as before: to compare the relations of order due to eAC and Amin
c

(e
min

).
To this end various sensor con"gurations measure a primary "eld submitted to spatial
distribution variations. The experiments take place in a rectangular acoustic cavity.
Figure 9 shows the transducer locations. Two sets of microphones are taken as two di!erent
acoustic areas. Each is made up of six microphones. The sensor con"gurations work with
two microphones, leading to C2

6
"15 sensor con"gurations for each set. The frequency is

200 Hz, located between the two eigenfrequencies corresponding to modes 010 and 110 of
the cavity. Two primary sources allow one to generate the spatial distribution of the
primary "eld: one radiates a "eld of constant amplitude and phase, while the other radiates



Figure 9. Transducers in the cavity. Top: seen from above, two types of sensor locations 30 cm above the #oor of
the cavity. Below: seen from above, primary and secondary sources set on the ceiling of the cavity.

Figure 10. Flow chart of the experimental procedure.
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a "eld the amplitude and the phase of which vary, thus leading to the spatial variation of the
primary "eld. The other two sources are the secondary or control sources. A thousand
primary "elds are radiated. For each of them, the procedure is given in Figure 10.

Figure 11 shows, in the same way as before, the curves of the minimum attenuation for
each sensor con"guration obtained exhaustively*in fact "ve from among the 15 are
shown*and the corresponding value of the indicator eAC. On the one hand, it is visible here
that the highest value of eAC corresponds to the highest curve of Amin

c
(e

min
). This remark may

be generalized if a slight precaution is taken: whatever the experiments carried out, it is true
that the highest curve of Amin

c
(e

min
) always corresponds to the highest value of eAC as long as

the value of eAC is high. We have never noticed a high curve of Amin
c

(e
min

) corresponding to a
weak value of the indicator eAC. On the other hand, the very poor correspondence of the



Figure 11. Comparison between the relations of order originating from the index eAC and from the minimum
attenuation Amin

c
(e

min
) in dB obtained exhaustively (experimental investigations).
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relations of order between eAC and Amin
c

(e
min

) appears here. This has always been the case in
the experiments conducted and no conclusion can be drawn regarding the relations of
order.

So the purely numerical and experimental tests show that if, among sensor con"gurations
weighted with a single diagonal matrix, there exists one associated with an indicator of high
value, it will provide an interesting curve of minimum attenuation. But one cannot begin to
draw any conclusions about the relation of order for lower values of eAC. This would surely
be the cause of di$culties if one were to "nd the full matrix D to maximize the value of eAC.
Indeed, for any given con"guration, a multitude of matrices D may result in an e$cient
sensor con"guration, and one could hope to "nd the best matrix D. But we were never able
to improve the robustness Amin

c
(e

min
) by maximizing eAC.

5.2. SIMILARITY AS AN INDICATOR OF ROBUSTNESS

The remarks made at the end of sections 4.3 and 5.1.3 are at the origin of the search for
another indicator of robustness.

It has been mentioned that a matrix A
c
is associated with each sensor con"guration.

Matrix A
c
is built with weighting matrix D, the role of which is to keep with N

c
sensors the

e$ciency reached with N sensors, concerning the attenuation of a reference primary "eld.
Equation (6) then gives the attenuation A

c
(p) from which the robustness Amin

c
(e

min
) is

deduced. Note that if A
c
,0, then A

c
(p)"A(p) and the robustness is Amin

c
(e

min
), the highest

that can be obtained. Is it possible to reduce the importance of A
c
by playing with D to

increase the robustness Amin
c

(e
min

)? The indicator d, called here of similarity, stems from this
idea.

5.2.1. ¹he indicator of similarity

For each control microphone con"guration, it has been shown that one can consider
either one single diagonal matrix or an in"nity of full matrices D. For diagonal D, it has
been shown that Amin

c
(e

min
) does not always depend on eAC in a monotonic manner and it

will probably be the same for full D. This is most certainly the reason why the attempt for
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maximize eAC, thanks to the possible choice of full D, failed. To complete the investigation
about robustness, it was thus necessary to "nd an indicator, the minimization or
maximization of which could lead to maximizing Amin

c
(e

min
). The indicator found consists of

the distance d between two matrices, expressed by

d"+
ij

D[A!G.H~1
c

.G*
c
.D.P]

ij
D, (12)

distance which reveals the degree of similarity between the matrices A and
F"G .H~1

c
.G*

c
.D.P. By realizing that (A!F)*(A!F)"A

c
, it is clear that A

c
is

totally related to d (see the de"nition of A
c
in section 3.1.)

At this level it is worth noting that the choice of a robust con"guration for diagonal
weighting in the purely numerical tests by means of the greater eAC or the smaller distance d,
has always been the same. But, in contrast to the "rst indicator, the second made it
possible to reach the greatest robustness after optimization. As has been suggested
above, this success most likely stems from the fact that the minimum attenuation increases
as the distance decreases: i.e., there is a character of monotonicity between both functions
of D.

5.2.2. Natural method to optimize a full weighting matrix and achieve robustness;
numerical tests

With N sensors, the optimal control /
n

that reduces at best the level associated to p
n

minimizes J
res

(/)"EG ./#p
n
E2 and /

n
"!H~1.G*.p

n
. With N

c
sensors taken from

among the N, the matrix D has been introduced in order that the optimal control m
n
that

reduces the level associated to D. pc
n

be equal to /
n
. The control m

n
minimizes

JI
res

(m)"EG
c
.m#D.pc

n
E2 and m

n
"!H~1

c
.G*

c
.D.pc

n
. The equality m

n
"/

n
leads to

G*
c
.D.pc

n
"H

c
.H~1.G*.p

n
. (13)

When it was required that JI min
res

be zero, one obtained equation (4) which is a particular case
of this more general equation (13).

There are N
c
]N

c
unknowns (D)

ik
while the system has only N

s
(N

s
;N

c
]N

c
) equations.

To obtain D, an arbitrary choice of N
c
]N

c
!N

s
elements with arbitrary values is made

and the other N
s
elements with their values are deduced to satisfy system (13). To this end,

the system is now written (cf. Appendix C) Fd"b where matrix F has the dimensions
N

s
]N

s
and the vectors d and b the dimensions N

s
]1. Provided matrix F is non-singular,

the other N
s
elements of d satisfy the matrix equation

d"F~1b. (14)

The aim is now to increase the robustness of the sensor con"guration associated with its
weighting matrix by the help of a genetic algorithm, the main lines of which are given in
Appendix A.

The individuals of the considered population are square matrices D satisfying
equation (13). To this end, for an initial population, random values are given to
((N

c
]N

c
)!N

s
) random elements and the N

s
last values are deduced via equation (14). The

next generations have a population of crossed and/or mutated individuals with, at most,
((N

c
]N

c
)!N

s
) chromosomes, N

s
elements being kept to satisfy constraint (13). The

adaptability of an individual to its environment is evaluated by the expression
+

ij
D[A!G .H~1

c
.G*

c
.D.P]

ij
D: the smaller this value, the better the adaptability.



Figure 12. Minimum attenuation before and after optimization of the weighting matrix. The improvement is
almost zero in this case where the diagonal matrix associated with the sensor con"guration had previously given
good robustness. , Weighting matrix improved by genetic algorithm; , Diagonal weighting matrix.

Figure 13. Minimum attenuation before and after optimization of the weighting matrix. The improvement is
signi"cant in this case where the diagonal matrix associated with the sensor con"guration had previously given
poor robustness: , Weighting matrix improved by genetic algorithm; , Diagonal weighting matrix.
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For the numerical tests, the control set is made up of three sensors in charge of
controlling the pressure at six microphones. From among the C3

6
"20 possible sensor

con"gurations, those selected were those where the weighting matrices were single and
diagonal for each con"guration, and those for which the greatest and weakest robustness
indicators eAC were obtained. These were then submitted to the optimization procedure to
try to increase the similarity between the two matrices. The optimization process takes
about 5 h here. At the end of the procedure, the full weighting matrix obtained is an input
for the calculation of the minimum attenuation. Figures 12 and 13, respectively, show the
curves of minimum attenuation for the initially robust and non-robust sensor
con"gurations. The improvement is quasi-zero when the con"guration is already robust
(Figure 12). At the other extreme, for an initially poor con"guration, as far as robustness is



Figure 14. As Figure 12 for another already robust control microphone con"guration indenti"ed with its "rst
indicator when the weighting matrix is diagonal: **, Weighting matrix improved by genetic algorithm; *,
Diagonal weighting matrix.

Figure 15. As Figure 13 for another control microphone con"guration indenti"ed as poorly robust through its
"rst indicator when the weighting matrix is diagonal:**, Weighting matrix improved by genetic algorithm;*,
Diagonal weighting matrix.
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concerned, the improvement is spectacular. Furthermore, the new robustness acquired is of
the same order of magnitude as that of the con"guration which was initially the best. These
facts have always been observed and Figures 14 and 15, resulting from other cases, are given
as further evidence to convince the reader.

6. CONCLUSION

Within the framework of adaptive active reduction of harmonic sound "elds, the paper
presented has focused on e$ciency and robustness of sensor con"gurations, the robustness
being against spatial perturbations of the primary "eld.
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Concerning e$ciency, the work has demonstrated that a limited number of control
microphones can be transformed to achieve a result similar to the minimization of sound
"elds at a larger number of monitoring microphones. The transformation consists in
"ltering, or weighting, the primary "eld at the small number of control microphone
locations. Such weighting applied to each sensor individually, called &diagonal' weighting,
can be unique. On the contrary, it is possible to use a full matrix which acts on all the
sensors and couples all the primary pressures. There are an in"nite number of such "lters
capable of making the sensor con"guration e$cient. From the informative point of view,
the weighting procedure does not bring any new information as it simply transforms
information used as inputs. But the weighting is at the center of determining or improving
the robustness of sensor con"gurations.

As to robustness, its de"nition is chosen from among various possible concepts.
Robustness is, here, the minimum attenuation Amin

c
(e

min
) guaranteed by a sensor

con"guration when the original, or &reference' primary "eld, #uctuates. Given the relative
error between the perturbed primary and reference "elds, the higher the minimum
attenuation, the more robust the sensor con"guration. The minimum attenuation may be
obtained either by an exhaustive method or, better, by using a natural algorithm to solve an
optimization problem. The latter has been written without any type of constraint
concerning the sound pressure "elds involved. In this case, purely numerical tests lead to
a good veri"cation of the computed minimum attenuation. For sound "elds stemming from
experiments, they inevitably satisfy the boundary conditions present in the experiment and
the minimum attenuation will be more precisely approached by exhaustive means. It turns
out that the quantitative value of the de"nition is not always easily obtained, at least until
now, and more accessible indicators of robustness have to be found. Two have been
conceived from the starting point of other concepts of robustness.

A "rst indicator called eAC stems from su$cient conditions only. A sensor con"guration,
the primary pressures of which are weighted with a unique diagonal matrix associated with
an indicator of high value, is designated by the experiments as almost really robust. But
below the high values of eAC , one cannot say that the higher the value, the more robust the
con"guration. This type of drawback is probably at the origin of the lack of success in trying
to improve the robustness by increasing the value of the indicator eAC thanks to
optimization of a full weighting matrix D, while still keeping the e$ciency. One is thus
informed at this level, that among various sensor con"gurations weighted each by a unique
diagonal matrix, if one presents a high indicator value (of possible values), it is likely to be
worth selecting. However, in one and only one of the numerous experimental tests carried
out, the highest indicator eAC was not accompanied by the highest curve of minimum
attenuation Amin

c
(e

min
). In view of this, it may be wise, insofar as no rigorous way has yet

demonstrated that the highest value of robustness indicator occurs simultaneolusly with the
highest minimum attenuation, to ensure that optimizing the weighting matrix D cannot
improve the robustness obtained.

Contrary to indicator eAC, the similarity has proved to be successful in optimizing a full
matrix D in order to improve robustness. Indeed, the minimization of the distance between
two matrices, one representing the situation with N sensors, another the con"guration with
N

c
sensors (N

c
(N), results in the optimal matrix D that leads to the best robustness.

Besides, an already robust con"guration with its own diagonal weighting is not improved
signi"cantly by optimizing a full matrix, while a non-robust con"guration with diagonal
weighting becomes much more robust by optimizing a full matrix. The fact that, very often,
it has been possible with a full matrix to achieve robustness of the same order of magnitude
as the best observed in the case of a diagonal weighting matrix, could suggest that all
con"gurations are potentially almost equally robust.
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This research consisted in "nding an approach to address robustness of a sensor
con"guration, robustness against spatial perturbations of the primary "eld. The main
theoretical, or technical, progress made is probably in determining the weighting matrix
which enables the improvement of robustness by working on similarity, while keeping
e$ciency. From the practical point of view, there now exists a way of choosing or modifying
a sensor con"guration to make it both e$cient and robust.

Regarding the physical interpretation of what has been found, some possible directions
have been given. Matrix D is related to the objective that can actually be reached with the
secondary sources. Minimum attenuation Amin

c
(e

min
) de"nes quite naturally the robustness.

These curves show a value emax
min

beyond which one cannot guarantee the absence of
ampli"cation for some of the perturbed primary "elds. The "rst indicator eAC is intuitively
related to this property. As for the minimization of the second indicator d, it results in the
con"guration with N

c
sensors having a behavior similar to that of the con"guration with

N sensors, whatever the primary "eld, leading to good robustness.
Nevertheless, the work done has its limitations, the major one lying probably in the fact

that the #uctuations of pressure around the "eld of reference are without constraints while,
in cavities for example, they have to satisfy the boundary conditions.

It is worthwhile to emphasize the capacity of the method that optimizes the e$cient
weighting matrix to obtain a robust sensor con"guration. Would this method still be helpful
when dealing with other types of errors, for example those arising from transfer functions?
According to the results obtained so far from the e!orts made in this direction, it seems
probable.
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APPENDIX A: MAIN FEATURES OF GENETIC ALGORITHMS

Genetic algorithms follow the laws of Darwin on the evolution of the species: individuals
in a species who are best adapted to their surroundings have the greatest chances of survival
and, thus, of reproducing themselves. As time goes by, the species increases its strength with



ON ACTIVE CONTROL SENSOR CONFIGURATIONS 703
regard to its environment. Reproduction consists in crossing and/or mutating the
chromosomes of the parents. The construction of genetic algorithm follows the general
pattern: (a) create an initial population which satis"es the constraints; (b) classify the
individuals according to their value; (c) select the individuals who are going to play the role
of parents by a procedure akin to the one known as the &&roulette method''; (d) cross and/or
mutate the parents' chromosomes and in so doing, create the new generation which must
also satisfy the constraints; (e) classify the individuals of the new generation according
to their value; (f ) if the quality sought is su$cient, stop the algorithm or, if not, return to
step (c).

APPENDIX B: DETAILS OF CALCULATION OF THE INDICATOR eAC

Knowing that /(p)"!H~1.G*.p (see section 2.1), it follows that d/"!H~1.G*.dp.
One also has Ed/E

H
"(dp*.A.dp)1@2)EdpE"eEp

n
E where A has been de"ned in equation

(2).

The de"nition of R
n

leads to the equality E/
n
E"Ep

n
E.JR

n
resulting in

Ed/E)(e/JR
n
).E/

n
E: i.e., with geometrical terms in the control space /3B

e
where B

e
is the

bowl centered at /
n
, the radius of which is (e/JR

n
).E/

n
E.

Besides, it is known that Ed/E must remain less than E/
n
E to prevent ampli"cation of

J(p
n
). According to the latter information, a su$cient condition to avoid ampli"cation of

J(p
n
) is (e/JR

n
).E/

n
E)E/

n
E: that is, e)JR

n
.

Thus the equality p"p
n
#dp with EdpE/EpE)e leads to (only in that direction)

/3B
e
LB

n
where B

n
is the bowl centered at /

n
, of radius E/

n
E. This ends the "rst step.

In the presence of a sensor con"guration of N
c
microphones, to the primary "eld vector

p with its N components corresponds the vector p
c
with its N

c
components where N

c
(N.

For this primary "eld p
c
, the con"guration with its N

c
control sensors provides the control

m(p).
As /(p) is the optimal control to attenuate J (p) at the N points, m (p) does not amplify J (p)

if m3B centered at / with a radius E/E; in other words if Em!/E)E/E.

But Em!/E)Em!/
n
E#E/

n
!/E)Em!/

n
E#(e/JR

n
) E/

n
E. In Figure 6, it is

noticeable that, at the end of this second step, nothing prevents m(p) from amplifying J (p
n
).

The geometry of Figure 6 shows that there exists a control of B
e
, the norm of which is

minimal and of value E/E
min

"(1!(e/JR
n
) E/

n
E). It tells one that ∀/3B

e
, if

Em!/E)E/E
min

then m (p) does not amplify J (p
n
).

The fourth step consists of the chain of conditions su$cient to satisfy the initial

objectives: Em!/E)Em!/
n
E#(e/JR

n
) E/

n
E)E/E

min
or Em!/

n
E)M1!(2e/JR

n
)NE/

n
E

leading now to e)JR
n
/2.

But Em!/
n
E2"(m!/

n
)*.H.(m!/

n
) and (m!/

n
)"!H~1

c
.G*

c
.D.P.p!H~1.G*.p

n
. It

is also known that /
n
"!H~1.G*.p

n
"m

n
"!H~1

c
.G*

c
.D.P.p

n
(see section 2.1 and

equation (5)) resulting in (m!/
n
)"!H~1

c
.G*

c
.D.P.(p!p

n
). By writing

C"P*.D*.G
c
.H~1,*

c
.H.H~1

c
.G*

c
.D.P, it follows that Em!/

n
E"J(p!p

n
)*.C.(p!p

n
)

)M1!(2e/JR
n
)N E/

n
E.

Another su$cient condition leads to EdpE JECE)M1!(2e/JR
n
)NE/

n
E making it

possible, at the end of this "fth step, to obtain "nally, with the help of E/
n
E"Ep

n
E.JR

n
:

EdpE
Ep

n
E
)

JR
n

JECE#2
"eAC.
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APPENDIX C: DETAILS OF CALCULATION TO OBTAIN EQUATION (14)

System (13) of N
s
equations is more precisely written as

Nc

+
i/1

(G*
c
)
ji

Nc

+
k/1

(D)
ik
(pc

n
)
k
"(H

c
.H~1.G*.p

n
)
j

for j"1, N
s
,

or

Nc

+
i/1

Nc

+
k/1

(G*
c
)
ji
(pc

n
)
k
(D)

ik
"(H

c
.H~1.G*.p

n
)
j

for j"1,N
s

where there are N
c
]N

c
unknowns (D)

ik
while the system has only N

s
(N

s
;N

c
]N

c
)

equations. To obtain D, an arbitrary choice of N
c
]N

c
!N

s
elements with arbitrary values

is made and the other N
s
elements with their values are deduced to satisfy system (13). To

this end, the system is now written as

Ns

+
m/1

(G*
c
)
j,i(m)

(pc
n
)
k(m)

(D)
i(m)k(m)

"(H
c
.H~1.G*.p

n
)
j
! +

iOi(m),

+
kOk(m)

(G*
c
)
ji
(pc

n
)
k
(D)

ik

for j"1, N
s
.

On the left-hand side, there are the N
s
unknowns (D)

i(m)k(m)
and on the right-hand side one

"nds all the other N
c
]N

c
!N

s
arbitrary elements and their values (D)

ik
with iOi(m) and

kOk(m).
De"ne (D)

i(m)k(m)
"(d)

m
, the mth element of vector d with N

s
components,

(G*
c
)
j,i(m)

(pc
n
)
k(m)

"(F)
j,m

, the ( jth, mth) element of matrix F of dimensions N
s
]N

s
,

(H
c
.H~1.G*.p

n
)
j
!+

iOi(m)
+

kOk(m)
(G*

c
)
ji
(pc

n
)
k
(D)

ik
"(b)

j
, the jth element of vector b with N

s
components.

Provided matrix F is non-singular, the other N
s
elements of d satisfy the matrix equation

d"F~1b. (14)
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